Voyage sur Mars

1. Le système solaire (4 points)

Le système solaire est organisé autour d'une étoile : le Soleil. Il comporte neuf planètes, dont la Terre et Mars font partie, qui tournent autour du Soleil en raison de la gravitation.

2. Durée d'une mission vers Mars (6 points)

2.1. Les lettres sont :

Z Étape 1 : Décollage de l'équipage de la Terre

H Étape 2 : Atterrissage sur Mars

E Étape 3 : Décollage du sol de Mars

V Étape 4 : Retour sur Terre

2.2. La durée totale de la mission comprend le temps de l'aller et du retour ainsi que la durée du séjour sur Mars :

$$180 + 550 + 180 = 910 jours$$

c'est-à-dire environ deux ans et demi.

3. Ressources en eau et en dioxygène sur Mars (8 points)

- **3.1.** Ces deux équations représentent bien des transformations chimiques, car des substances disparaissent (les réactifs, à gauche de la flèche) et de nouveaux corps sont formés (les produits).
- **3.2.** Formule chimique de l'eau : H₂O.

L'eau est produite par la première transformation en utilisant le dihydrogène embarqué et le dioxyde de carbone de l'atmosphère martienne :

Première équation : le dihydrogène H_2 et le dioxyde de carbone CO_2 sont les réactifs et le méthane CH_4 et **l'eau H_2O** sont les produits.

Formule chimique du dioxygène : O₂

Le dioxygène est produit par la deuxième transformation en décomposant de l'eau obtenue pas la première transformation :

Deuxième équation : l'eau H₂O est un réactif et le **dioxygène O₂** et le dihydrogène sont les produits.

3.3. La molécule de méthane de formule CH₄ est formée d'un atome de carbone et de quatre atomes d'hydrogène.

4. Communication entre Mars et la Terre (7 points)

En 2031, le graphique montre que la distance entre la Terre et Mars varie de 1,9 u.a. à 2,5 u.a. La relation entre la distance, la vitesse et le temps de parcours est :

$$d = v \times t$$
 soit $t = d / v$

avec d distance parcourue en km;

t le temps en secondes;

v la vitesse en km/s.

Si un message radio est envoyé de Mars à la Terre et que la Terre répond, la distance que les signaux radio doivent parcourir est au minimum :

$$d = 2 \times 1.9 \text{ u.a.} = 2 \times 1.9 \times 150\ 000\ 000 \text{ km} = 570\ 000\ 000 \text{ km}.$$

Le temps de parcours de cette distance est :

t = d/v = 570 000 000 km / 300 000 km/s = 1900 s = 31.7 minutes.

En cas d'urgence, la mission martienne ne pourra avoir aucune aide radio de la Terre avant une demi-heure. Ce qui peut poser problème.